Surface modified multifunctional ZnFe2O4 nanoparticles for hydrophobic and hydrophilic anti-cancer drug molecule loading.

نویسندگان

  • Debabrata Maiti
  • Arindam Saha
  • Parukuttyamma Sujatha Devi
چکیده

Multifunctional ZnFe2O4 nanoparticles were successfully synthesized via thermolysis of Fe-oleate and Zn-oleate precursors. Monodisperse, single phase ZnFe2O4 nanoparticles with an average particle size of ∼22 nm, exhibiting green emission (λmax∼ 480 nm) and ferromagnetism at room temperature (saturation magnetization of 48.46 emu gm(-1)) have been formed by this novel approach. By appropriate surface functionalization, these materials have been converted into smart carriers of hydrophobic (water insoluble) drug molecule-curcumin and hydrophilic (water soluble) drug molecule-daunorubicin. The in vitro cytotoxicity of both the hydrophobic and hydrophilic drug loaded ZnFe2O4 nanoparticles was studied using the conventional MTT assay which revealed that the drug loaded nanoparticles induce significant death of the carcinoma cells (HeLa). Interestingly, this appears to be a significant development towards the capability of surface functionalized multifunctional ZnFe2O4 nanoparticles as carriers for both water soluble and insoluble drugs for anti-cancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of antioxidant and anti-cancer properties of curcumin / beta- and gamma-cyclodextrin complexes modified with chitosan nanoparticles on lung cancer cell A549

The aim of this study was to investigate the interaction modification of curcumin complex molecule (CUR) in beta- and gamma-cyclodextrin (β-CD and γ-CD) carriers with chitosan (CS) nanoparticles for targeted drug delivery and to compare their performance. The targeted drug delivery system includes the therapeutic agent of the CS nanoparticles targeting section of the same drug and the CD carrie...

متن کامل

Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells

Using nanoparticles to deliver chemotherapeutics offers new opportunities for cancer therapy, but challenges still remain when they are used for the delivery of multiple drugs, especially for the synchronous delivery of hydrophilic and hydrophobic drugs in combination therapies. In this paper, we developed an approach to deliver hydrophilic-hydrophobic anticancer drug pairs by employing magneti...

متن کامل

Adsorption of Fluconazole Drug on Silica Aerogel‌ by Immersion Method and Investigation of the Rate and Mechanism of Drug Release

In this study, adsorption of fluconazole on silica aerogel was performed successfully by the immersion method in the 1% solution of fluconazole-ethanol at the ambient condition and without using the supercritical method. The hydrophobic and hydrophilic silica aerogels were synthesized by the two-stage sol-gel method and dried at the ambient temperature. This method had most of drug loading at 2...

متن کامل

FeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer

Objective(s): For cancer cells, an efficient and selective drug delivery vehicle can remarkably improve therapeutic approaches. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 NPs and their incorporation in a dual temperature and pH-responsive polymer, which can serve as an efficient drug carrier. Materials and Methods: MnFe2O4 NPs were synthesized by chemical co-pr...

متن کامل

Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells.

Nanomedicine formulations such as biodegradable nanoparticles (nps) and liposomes offer several advantages over traditional routes of administration: due to their small size, nanocarriers are able to selectively accumulate inside tumours or inflammatory tissues, resulting in improved drug efficacy and reduced side effects. To further augment targeting ability of nanoparticles towards tumour cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2016